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ABSTRACT

Expressions to describe fringe contours in the re-
gion of interference of two coherent beams are derived
for three combinations of plane and spherical wave geo-
metries. The fringe contrast ratio is shown to be spa-
tially variable whenever spherical wavefronts are in-
volved and can be controlled by altering the reference
to signal beam intensity ratio. These expressions ~an
be applied during the fabrication of matched filters

or holographic lenses.




INTRODUCTION

Interference fringe patterns are the means with
which optical wavefront information is recorded and
stored in applications of holography, matched filter-
ing, and in optical component testing with interfero-
metric techniques. Consequently, an understanding of
fringe pattern properties obtained with several rudi-
mentary geometric systems is of practical value in de-
vising test techniques, as well as in fostering an
understanding of more complicated geometries. These
are of more than academic interest; the setups are
used in such applications as beam collimation checks and
holographic lens preparation. Fringe characteristics
are influenced by several factors: relative intensities
of the signal and reference beams; orientations; wave-
length; coherence; state of polarization; and beam
motion or enviromment-induced optical path length
changes. We are concerned primarily with the first two
significant factors in this note. Other items, namely il
the influence of coherence on fringe visibility (Refs. 1

and 2) the effects of intentional motion or path length




changes (Ref. 3), and methods to alleviate the adverse
effects of unwanted motion and techniques to stabilize
fringe recording systems (Ref. 4) have been discussed

in the literature as noted. Wavelength is assumed to

be constant. Also, the influence of the photographic

recording technique is not considered.

The intent ¢f this note is to determine the in-
terference fringe pattern characteristics that are ob-
tained with combined plane wave and spherical wave geo-
metries. Three fundamental arrangements are considered:
the interference of two plane waves, of a plane and a
spherical wave, and of two spherical waves. 1In all
three cases we find an equation for the light intensity
distribution in a plane in the region of beam overlap,
determine contours of intensity maxima and minima in
this plane (i.e., fringe geometry), and contrast ratios.
The contrast ratio is shown to be variable across the
interference or recording plane whenever a spherical

wave is used, and can be easily optimized.




BASIC NOTATION

Figure 1 shows a signal beam and a reference beam
incident upon the planar surface of a holographic re-
cording or interferometer observation plane located in
the region of interference. The origin of a coordinate
system is located in this plane and is oriented for
convenience so that the x,z-plane 1is in the plane of
incidence, as illustrated. The y-axis is directed
normal to the plane of the figure. The =z-axis is also
called the optic axis. The angles of incidence for
reference and signal beams are labeled UR and Vgs
respectively. For our purposes, these angles of inci-
dence are measured with respect to a direction parallel
to the optic or =z-axis. Note that the incident angle
is constant for each ray of light in a collimated beam
with planar wavefronts. On the other hand, the inci-
dent angle for each light ray in a spherically diverg-
ing beam (or in general, a nonplanar wavefront) varies
with each ray path. This ray path variation coupled
with an arbitrary placement of a recording plane ac-

count for the wide variations in fringe characteristics.




It is conventional to describe the amplitude of an
optical signal in exponential form explicitly omitting
the exponential time factor, exp(jwt). This can be
done since the time factor is common to both light beams
(i.e., the beams are temporally coherent). The spatial

dependence of the reference beam amplitude is written as

R(x,y,2) RO exp(jkgr .+ 1)

(1)

Ro exp[jk(prx +qy+ mrz)]

Here, RO represents the magnitude of the complex ref-
erence beam amplitude, k = 2m/\ where A 1is the wave-
length, gr is a unit vector in the direction of propa-
gation of the reference beam, and r is a position vec-
tor to the point at which the reference beam amplitude
function is measured. The direction cosines of the unit

vector s_ are p

% and m_, and the components

e 9o

of the position vector r are x, y, and z. Note
that the reference beam intensity is given by

[R{x,y,2) °* R*(x,y,z)] = Ri where the * denotes com-
plex conjugate. If the reference beam is a plane wave
then Ro is a constant independent of position [other-
wise one has, in general, RO = Ro(x,y,z)]. Quantities

in the exponent of Eq. (1) determine the phase in terms




of the components of s. and r. The unit vector S,

is constant for a plane wave and spatially variable for
other wavefronts.

If the reference beam is a plane wave we shall de-
note its amplitude by Eq. (l). However, for a reference
beam with spherical wavefront, we use the expression

R(x,y,z) = (const/p) exp(ikp) (2)
where p represents the distance from a point source
(origin of the spherical wavefront) to any given point
in space. Since the unit propagation vector in this
case is a radial vector, the phase term is kp; i.e.,
surfaces of constant phase are spheres for which , =
const.

The signal beam is either a plane or spherical
wave and therefore expressed by

S(x,y,2) = So exp(jkg T+ jo) (3)
or
S(x,y,2) = (const/p) exp(jkp + jo) (4)
in analogy with Eqs. (1) and (2). The unit vector in
the direction of propagation is now labeled s. For
generality, the quantity ¢ represents a constant

phase difference between both beams (i.e., the refer-




ence and signal beams are usually derived from a common

source).
In the region of beam overlap the resultant beam
amplitude is just the sum
A(x,y,z) = R(x,y,2) + S(x,y,2) (5)
and the corresponding light intensity at points in the

three dimensional region of interference is given by

%
I(X’Ysz) A(X,Y,Z) = A (X’Y:Z)

L.

(6) |
RR + SS + RS + SR’ |

INTERFERENCE OF TWO PLANE WAVES

Figure 2 illustrates the overlap and interference

of two plane waves. Let the direction cosines of the
unit vector s for the plane wave signal beam be
written as p, q, and m. Then, from Eq. (3) one has

S(x,y,2) = S, exp[jk(px + qy + mz) + j¢] (7)
In the region of beam overlap, the light intensity dis-
tribution in the interference pattern is obtained from
Eqs. (1), (6), and (7). One has

- .. - s =
1(x,y,z) = R, #35_ + 2ROSO cos [kr (s Sr) + 0] (8)

— y




where

re(s-s)=(-plx+(qa-qly+ @m-m)z (9)
Note that the intensity pattern of Eq. (8) is con-

stant for regions in space where the argument of the

cosine function is constant, i.e., along planes in

space described by the equation

r (; - Er) = constant (9a)

Since both propagation vectors s and s. lie in
the plane of incidence, then q = 0 = q.- Furthermore,
in the observation or holographic recording plane one
has z = 0. Thus the intensity distribution in this
plane becomes, using Eqs. (8) and (9)

2 2 X
I(x,y,0) = R+ S_ + 2R_S_ cos[k(p - p)x + ¢] (10)

This well known intensity profile is illustrated in
Fig. 3. The intensity curve is periodic in terms of
the x-variable. Clearly the maxima and minima values
for I(x,y,0) occur at x-values for which the cosine
term is +1, respectively, i.e., the argument of the
cosine term is an even or odd multiple of w. Spe-
cifically, intensity maxima occur when

k(p o Pr)xmax + ¢ = 2n7w ’ n =0, '.tl’ iz’

(11)




and intensity minima when

k(p - pr)xmin + ¢ = 2n+ 7 (12)
The interference fringe lines (corresponding to equal
intensity contours) appear as a family of straight
lines parallel to the y-axis.
The fringe line spacing or spatial period is from
either Eq. (11) or Eq. (12)
e = Xf(p - B.) (13)
For example, if the reference beam propagation is in
the z-direction, then ¥ & 0, and consequently
pP. = sin wr = 0, Thus p = sin ws and
Ax = A/sin Vg (14)
If both reference and signal beams are symmetrically
oriented about the 2z-axis, then P = g = = sin Ve
and the fringe spacing is obtained from
Ax = N2 sin ¥ (15)
Finally, for any arbitrary pair of beam orientations in
the plane of incidence, the fringe separation follows
from Eq. (13)
Ax = N (sin L - sin #r) (16)

The positive sign is used when the reference beam inci-

dent angle is oriented opposite to the signal beam angle




(as shown in Fig. 2); the negative sign is used when
both incident angles are oriented in the same angular
direction from the optic axis. Fringe separations de-
picting Eqs. (14) and (15) are summarized in Fig. 4.
It is of interest to note that for certain cases fringe
spacings for the asymmetrical case described by Eq. (16)
are those values which are bounded by the two illus-
trated curves (e.g., if the angles are oppositely
oriented and ¥, < ws).

The contrast ratio is a '"figure of merit" of the
fringe pattern that describes the depth of modulation
for the sinusoidal fringe pattern previously illustrated

ote

in Fig. 3. The contrast ratio is defined as’

Imax B Imin
‘2" 3 + I, 17)
max min

where ImaX refers to the maximum intensity value in

the interference pattern and is given by (R0 + SO)Z.

*
Other definitions use C. = I /I

; as the contrast
R max’ “min

ratio for images and, hence, the photographic result
of recording the fringes. Also (Imax - Imin) is

often called the depth of modulation.

e,




Thus, the contrast ratio can be written as

2 2
(B F 8. = 4R~ 58}
(Ro + SO) + (Ro - so)
Defining the beam ratio as
R2
R = Reference Beam Intensity _ o
Signal Beam Intensity SZ
o
we obtain
2 VR
SR T i aw (59

A plot of the contrast ratio as a function of the
beam ratio given by Eq. (19) is shown in Fig. 5, as the
curve marked € = 0. Cr has a maximum value of unity
at R =1, and for the case of two interfering plane
waves, is constant across a recording plane.

As a practical illustration, the shearing inter-
ferometric method for establishing a collimated beam
involves the interference of two plane waves. The
shearing interferometer consists of a slightly wedged
optical flat mounted so that the plane of the wedge
angle is perpendicular to the plane of the mounting

base (see Fig. 6). A straight wire is often mounted

across the face of the flat and set parallel to the

10




*
base plane as a fringe reference.

The collimated beam condition is illustrated in
Fig. 6. The collimated beam is divided into two beams,
one as a reflection from the front surface, the other a !
rear surface reflection. Both reflected beams travel

at a slight angle and form interference fringes. These

fringes will be parallel to the reference wire (and
themselves) when the incident beam is collimated. Al- @

ternately, the ability to form a straight line fringe

field is useful as a visual check on the '"quality" of

the collimation. One could also use this interference

|
?

fringe pattern in another way, i.e., to determine the
wedge angle, assuming the incident beam to be colli-

mated.

INTERFERENCE OF A PLANE AND SPHERICAL WAVE

The optical setup to achieve the interference of a
plane and spherical wave is shown in Fig. 7. For gen-
erality, we locate the point source of the spherical
wave at the position (a,b,c) with respect to an arbi-

trarily chosen coordinate origin. Two cases of interest

%
A shearing interferometer is manufactured by the Conti-

nental Optical Corporation, Hauppauge, New York 11787.

11




to be discussed are characterized by placing the point
source of light of the spherical wave on the system
optic or =z-axis, or alternately placing the point
source off the =z-axis. The angular orientation of
the plane wave is arbitrary.

The distance from the point source to any other

point in space is given by

p=fx-al+ -2+ -l 0

The beam amplitudes, given by Eqs. (1) and (4), are

summed and the net beam intensity in the three dimen-

sional region of overlap is found to be

I(x,y,2) = Rg + Sz/o2
(21)

+ (25R_/p) cos{k(p o B X m}
(Note that the reference beam phase is assumed to be
zero at the arbitrary origin.)

The conditions for maximum and minimum intensity
values are again obtained by setting the argument of the
cosine function equal to an even or odd multiple of 1,
respectively. Thus, for a maximum resultant intensity

one requires that

12




k(p - ;r . ;) + ¢ = 2nrm ~ n=0, +1, +2,
(22)

and for a minimum one requires

k(p-Er-E)+¢=(2n+1)7r , n=0, +1, +2,
(23)
To demonstrate the geometrical properties of the
interference fringe patterns described by Eqs. (22) and
(23) we introduce the quantity

an=p-§r-r (24)

where o (2nm - ¢)/k or [(2n + 1)7 - ¢]/k from
Eqs. (22) and (23), respectively. 1In terms of the di-
rection cosines for the plane wave, one has

p = P.X + q.y + m_z + =3 (25)

Squaring both sides of Eq. (25) and combining with

Eq. (20) leads to

2302 2. 2 2, 2
=g # (1 <qdy Q=902

(s + PrOn)X = 2(b * qrﬁn)y - 2(c + mrnn)z
(26)

- 2prqrxy - 2qrmryz - 2prmrxz

qi - (a2 + b2 + 02)

13




This result is in the form of an equation ior a family
of ellipsoidal surfaces in space. These surfaces are
equiphase surfaces for the maximum or minimum intensi-
ties as the case may be, but the intensity pattern is
not necessarily uniform on a given ellipsoidal surface
because of the factors 1/p, l/p2 in the intensity, see
Eq. (21). Consequently the intensity does, in general,
depend upon the radial distance p. It is clear then
that the surfaces of equal visibility are nonplanar (as
was the case with two interfering plane waves).
Let an observation (or recording) plane be described

by the linear equation

Ax + By + Cz = D (27)
In this plane, the interference fringes form a series
of elliptical shapes. This can be demonstrated by
solving Eq. (27) for the quantity 2z and substituting
the result into Eq. (26), i.e., finding the intersecction
of an ellipsoid and a plane. The resultant equation is
quadratic in x and y and is of the form of a family
of ellipse contours in the observation plane. As noted
above there will be a variation in fringe visibility in

this plane.

14




Two specifi~ cases are of practical interest. First
assume that the reference beam is oriented such that the
direction cosine 9 = 0 and that z = 0 in the observa-
tion plane. Equation (26) then reduces to

P 2 2
(1 - pr)x + vy~ - 2(a + prwn)x ~ 2by

(28)
B (a2+b2+c2)
n
which is representative of a family of ellipses in this

specific observation plane. Since 1 - pi <1 the
semimajor axis is oriented parallel to the x-axis.
Once again the fringe spacing is not constant over the
plane of interference.

As a second example, assume that the reference beam
is directed along the =z-axis. For this special orienta-
tion the direction cosine P = 0 as well. Thus,

Eq. (28) reduces to

x2 + y2 - 2ax - 2by = wﬁ - (a2 + b2 + c2)

or

(x - @) + (v - )%=l -2 (29)

The interference fringe pattern consists of a family of

concentric circles in the observation plane that are

centered about the point (a, b). For convenience one




can take a = 0 =b to simplify the above results.

We can readily estimate the fringe spacing for this
case. For example, intensity maxima are located at po-
sitions where kpmax = 2nr - ¢, from Eq. (22). The
change in p for consecutive n-values is

| S
(20 + D7 - o) - @om - 0] = 2= (30)

o

Ap =

If r = sz + y2 is the polar coordinate in the observa-
tion plane where z = 0 then, from Eq. (20)
p2 = x2 + y2 + c2 = r2 + c2 (31)

The fringe separation in the observation plare is ap-

proximated by

Ar = pAp/r = J1 + c2/r2 ro =1 + c2/r2 A (32)

The fringes appear as a family of circular rings, how-
ever the fringe spacing Ar is not constant; rather it
decreases for increasing r-values as indicated by
Eq. (32).

The (relative) maximum value of the light intensity
in the plane of observation is from Eqs. (21) and (22)

2 2, 2 i 2 2
Imax - Ro gk /pmax ki ZSRo/pmax B (Ro e /pmax) )

The (relative) minimum value is from Eqs. (21) and (23)

16




S S
Imin 3 Ro o /pmin ZSRO/p

2

ot R~ Bp Y (36)

Thus the contrast ratio, defined by Eq. (17), can be

written as

2
Bl — (35)

R 2 2
(Ro o s/Dmax) * (Ro S/‘min)

o (Ro i S/pmax)2 & (Ro < S/Dm' )

For regions of the interference fringe pattern
where the fringe spacing is small compared to the dis-
tance to the source, one can approximate

~ ~
=g siTicost B
Pmax ~ "min / L35
where € 1is the angle between the optic axis and the
line segment joining the point source and a typical ob-
servation point in the vicinity of p O Paon
max min
With this approximation the contrast ratio can be

written as

Jre.
2 VR cos @

Cy = (37)
R P+ cos2 8
where the beam ratio # 1is now defined as
2
CR
g
P o= =
. 18 ( (38)

Equation (37) demonstrates that with this plane wave-
spherical wave geometry the contrast visibility varies

across the observation plane.




The plot of contrast ratio as a function of the
signal/reference beam ratio, previously illustrated in
Fig. 5 for the case of two interfering plane waves, can
be used to portray the contrast ratio function of
Eq. (37). Define the "modified" beam ratio as

/ 2
R" = Rlcos” @ (39)

In terms of R’, Eq. (37) becomes

2 e’
R=1+rR =

C

which is of the same functional form as Eq. (19). Thus
Fig. 5 represents C., in a condensed form as a function
of R’'. The maximum contrast ratio Co = 1 only for
points in the observation plane where /' = ?/cos2 8 =1
or equivalently, where cos26 = R, This is an important
result. It means that maximum contrast is obtained with
a beam ratio less than one; quite different than the re-
quirement with two plane waves. The contrast ratio curve
is also illustrated for a particular value of € = 60°,

As a second practical example, consider the fabrica-
tion of a high spatial frequency optical matched filter to
improve the signal-to-noise ratio. Since the contrast ratio

is not constant, points near the center of the pattern have

higher contrast ratios than those of more remote points at

18




higher spatial frequency values. One can envision compensa-
tion for this contrast fall-off in the filter plane to en-
hance favorably the higher spatial frequency signals (note
that the fall-off in response of film at higher spatial fre-

quencies further degrades contrast).

INTERFERENCE OF TWO SPHERICAL WAVES

This beam configuration is illustrated in Fig. 8.
The point sources are located at distances d1 and d2
from the observation plane. The plane of incidence is
determined by these two point sources and the =z or
optic axis. A coordinate system is centered between the
two point sources as indicated in the figure.

Let Py and po represent the distances from each

point source to a position in the region of interference.

Then

2 2

I -2+ 32 4 (2 + 4

Pl
(41)

J(x + a)2 + y2 + (z + d2)2

F2

Beam amplitudes in the observation plane are given by

19

T e et el A S B P RS (S TNV N WA TN

TR I o i 44

e 2 et e,




8 Jkoy

S;(x,y,0) = =
i (42)
S j(kp, + ¢)
SZ(X,Y,O) = _2' e ¢
i
where Sqy» SZ’ and ¢ are constants. Consequently,
the intensity profile of the combined beams reduces to
S% Sg 2818 ( )
I = - + -§'+ E—E_— cos]k(p2 - pl) + ¢( (43)
o 12 ’
1 P2

The conditions for local extremum values of the in-
tensity distribution are given by
k(p2 - pl) + ¢ = 2nmw (44)
for a maximum and

Zn + 1)w (45)

k(py = pp) + 0
for a minimum, where n = 0, +1, +2, ... . 1In the re-
gion of interference the fringe contours described by
Eqs. (44) and (45) are next shown to be quadratic sur-
faces.

We set N (2nm - ¢)/k for a maximum or a, =

[(2n + 1)7 - ¢]/k for a minimum; thus from either

Eqs. (44) or (45)

?\2 = pl o 'yn (46)




or

2 2 2
Pg = Py = oy + 2a,p4 (47)

Using Eqs. (41), Eq. (47) reduces at first to

2 2 2

10 dn] + Z(d2 - dl)z = anpl (48)

and finally in terms of the x,y,z coordinates

4x° + [dg - d

2 2 2

202 2 2
(16a” - 4a )x" - Ga ¥~ + [4(d2 - a3 - 41n]z

2 2
+ 8a(d§ - dD)x + 40, - 4P + 202, ]z (49)

+ 16a(d2 - dl)xz + [62 - 4ai(a2 + di)] =0
where

R
T

Two interesting cases serve to illustrate the na-

8 = d

ture of the fring contours. 1In the plane 2z = 0,
Eq. (49) simplifies to

2 2

(16a2 - 4ﬂ§)x ~ 4ﬂ§y

(50)

2

2z 2 2. 2 2
+ Sa(d2 - dl)x + [B” - Awn(a + dl)] = 0

Furthermore, if we consider the arrangement for which

d1 = dz, then one has
2 oy o2 2.2 2r 2 _ 2 . B
(16a” - 4rn)x - 4‘ny + 'n(’n 4(a dl)] =0

41

R ——




If the coefficient of the x2 term is positive then
Eq. (51) represents a family of hyperbolic curves in the
recording plane. On the other hand, if this coefficient
is negative then Eq. (51) represents a family of hyper-
bolic or elliptic curves depending upon the sign of the
last, constant term in the equation.

As a final example let the two point sources lie on

the optic axis., Setting a = 0 in Eq. (41) yields
Py = sz + y2 =+ d2

1
(52)
Squaring and subtracting results in
Z 2 2 2
e ol g (53)
where we assume dy, > dl’ From Eq. (47) one has
2 2 2
9y - S Ray RN )
or, in terms of the x,y coordimtes, Eq. (54) reduces
to
2
g - d - 2
X" +y = % - d1 (55)
ba

Thus, the interference fringe patterns are circular,
with a common center located at the origin of coordi-

nates in the observation plane.




The contrast ratio for this two-spherical beam set-

up can be easily determined as

_ gy
51 P9
= (56)

R 52 oy 2
1 + g— ——
3 P2

y 3 2
or, defining & = ((82/51)(01/p2>

—
_2NR
CR’1+/P (57)
The contrast ratio has the same function form as

in Eqs. (19) and (40) and depends upon the spatially

variable quantity pl/pz.

CONCLUSIONS

We have derived equations for the interference
fringe contour for combinations of plane and spherical
waves in the volume of interference. Spherical wave-
fronts give rise to contrast ratios that are spatially
variable which can be a nonoptimum condition in record-

ing patterns. Control of the beam ratio can be effected

to provide the desired optimized conditions in holography,

matched filter fabrication, or any particular applications.
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FIGURES

Figure

1 Coordinate system and general beam geometry

2 Interference of two plane waves

3 Intensity profile of the interference pattern
of two plane waves

4 TFringe separation as a function of plane wave
beam orientations

5 Contrast ratio as a function of beam ratio

6 Plane wave interference in a shearing
interferometer

7 Interference of a plane and splierical wave

8 Interference of two spherical waves
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Fringe separation as a function of
plane wave beam orientations
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Fig. 5 Contrast ratio as a function of the
beam ratio
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Fig. 6 Plane wave interference in a
shearing interferometer
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Fig. 7 Interference of plane and
spherical waves
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Fig. 8 Interference of two spherical waves
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